

HERA Experience Physics Aspects

MPI Munich

- DIS in collider mode: Accelerator and Experiments
- HERA success story: Precision cross sections, structure functions and parton densities
- HERA outlook: What's still in the queue?
- Open Issues

Deep Inelastic Scattering

 $Y_{\pm} = 1 \pm (1 - y)^2$

valence & sea quarks

gluons

MPI Munich

Mapping the Kinematic Plane

Burkard Reisert EINN 09 Milos

ALANDOZIK

HERA - the world's largest electron microscope (Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany)

PETRA

spatial resolution: ~ 10-18 m

colliding beams, equivalent to 50TeV on fixed target

Collider Experiments at HERA

Hl

went for LAr

ZEUS went for compensation

MPI Munich

Burkard Reisert EINN 09 Milos

A final salute to our experiments

How we like to remember H1 and ZEUS

Hera Luminosity

An Dost t

Burkard

Reisert

EINN 09 Milos

HERA I: 1992-2000 HERA II upgrade:

- luminosity
- longitudinal polarization of the lepton beams (spin rotator pairs around the interaction regions)
- massive upgardes also for the detectors

- running efficiently from 2003 onwards
- Luminosity $L = 500 \text{ pb}^{-1} \text{ per exp.}$

6

History of H1 F₂ Measurements

DIS 2009, Jan Kretzschmar, University of Liverpool - p.10

Burkard Reisert EINN 09 Milos Accuracies starting from 20 – 30%, reaching 4 – 6%, last publication using 1996/97 data 2 – 3%, and finally 1.3 – 2%

Structure Function F₂

 H1 & ZEUS extended fixed target kinematic regime in x and Q² by 2 Orders

Described by DGLAP

Scaling violations

HERA Averaged NC cross sections

- Precise measurements from two experiments
- For Q² ≤ 100 GeV²

δ_{stat}≤1%,δ_{sys}≤3% for Q² ≥ 1000 GeV² δ_{stat} > δ_{sys}

- Combine datasets from both experiments: Key assumption H1 and ZEUS measure the same cross section at the same x,Q²,y
 - Improved precision of combined H1 and ZEUS datasets (stat and sys)

Input to HERA PDF Fits

$$\text{NC} \qquad \frac{d^2 \sigma^{e^* p \to e^* X}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \underbrace{\left(1 + (1 - y)^2\right)}_{Y_1 = 1 \pm (1 - y)^2} \cdot \left(\tilde{F}_2\left(x, Q^2\right) - \frac{y^2}{Y_1} \tilde{F}_L\left(x, Q^2\right) \mp \frac{Y_1}{Y_1} x \tilde{F}_3\left(x, Q^2\right)\right)$$

$$\tilde{F}_2 = \sum_i A_i(Q^2) [xq_i + x\bar{q}_i] \Rightarrow F_2^{em} = \frac{4}{9} x (u + \bar{u} + c + \bar{c}) + \frac{1}{9} x (d + \bar{d} + s + \bar{s})$$

$$x \tilde{F}_3 = \sum_i B_i(Q^2) [xq_i - x\bar{q}_i] \Rightarrow xF_3 = B_U x (u - \bar{u} + c - \bar{c}) + B_D x (d - \bar{d} + s - \bar{s})$$

$$\text{Electroweak Coefficient Functions } A_i(Q^2), B_i(Q^2) (\text{QED: } A_i = e_i^2)$$

$$\text{CC}$$

$$\tilde{O}_{CC}(e^+ p) \propto x \left[(1 - y^2) (d + s) + (\bar{u} + \bar{c}) \right] \times (1 + P_e)$$

$$\sigma_{CC}(e^- p) \propto x \left[(u + c) + (1 - y^2) (\bar{d} + \bar{s}) \right] \times (1 - P_e)$$

$$\text{PDF general form:} \quad xPDF = Ax^B (1 - x)^C \cdot (1 + Dx + ...)$$

MPI Munich

Burkard Reisert EINN 09 Milos **PDF general form:** $xPDF = Ax^{B}(1-x)^{C} \cdot (1+Dx+...)$ **Parameterize:** g, u_v, d_v, $\overline{U}(=\overline{u}+\overline{c})$, $\overline{D}(=\overline{d}+\overline{s})$

Charged Current Cross Section

An Dost t

Burkard Reisert

EINN 09

Milos

CC Cross section provide flavor sensible constrains at high x

$$\sigma_{CC}(e^+p) \propto x \left[(1-y^2)D + \overline{U} \right]$$
$$\sigma_{CC}(e^-p) \propto x \left[U + (1-y^2)\overline{D} \right]$$

Improved precision of σ_{cc} By combining H1 and ZEUS

PDF Fits on HERA I Data

MPI Munich

Burkard Reisert EINN 09 Milos

Model uncertainty: variation of charm and bottom mass, starting scale Q_0^2 , Q_{min}^2 of included data, strange and charm fraction at starting scale

Comparison to Global Fits

Burkard Reisert EINN 09 Milos

not a completely fair comparison: HERA combined data were not available to global fitters

Comparison to Global Fits

Burkard Reisert EINN 09 Milos

Ap Dg > 1t

MPI Munich

not a completely fair comparison: HERA combined data were not available to global fitters

Impact of HERA data

Example: W⁺ production at the LHC (Study by A. Cooper-Sakar)

Note: Error bands are experimental uncertainties only model uncertainty will become increasingly important

MPI Munich

Future HERA PDF Fits

- So far only part (all) of the inclusive HERA I were used → HERAPDF0.1 (0.2)
- →Incorporate all NC and CC from HERA I&II
- ➔Include jet cross sections
 →constrain high *x* gluon
- → Include charm and beauty
 → flavor decomposition of the sea

MPI Munic

Reisert EINN 09 Milos

- Charged & Neutral current cross sections with polarized e[±] beams
 - \rightarrow constrain valence quark region

Charm & Beauty Structure

Charm and Beauty production in DIS is driven by gluons in the proton

Charm tag: reconstruct D mesons Beauty tag: displaced vertex, soft μ

MPI Munich

Polarization dependence of CC

Input to PDF fits: Double differential CC e[±]p cross sections

ALA DOZIE

MPI Munich

Burkard Reisert

EINN 09 Milos

Ap. Dy > 1t

MPI Munich

OPEN ISSUES

MPI Munich

Open Issues (I): high x

Inclusive cross sections at high x:

NC
$$e^{\pm}p: \sigma \propto \frac{4}{9}xu$$

CC $e^{-}p: \sigma \propto xu$
 $e^{+}p: \sigma \propto (1-y^2)xd$

Quark distributions can be extracted with minimal corrections from QCD fits

MPI Munich

Burkard Reisert EINN 09 Milos Reach in x limited by detector acceptance, hadronic final state goes down the proton beam line u: $x_{max} = 0.65$ d: $x_{max} = 0.4$

Open Issues(I): High x continued

Events at high x at acceptance limit

Poor resolution for x →cannot measure differential σ at x,Q2 point

Measure integrated σ for x > x_{limit}

 σ larger than expected

PDFs at high x

$$f \propto (1-x)^C \Longrightarrow f \xrightarrow{x \to 1} 0$$

MPI Munich

ALA DOZIE

Burkard Reisert EINN 09 Milos Constraint by shape → underestimated uncertainty?

Open Issues II: Light flavor decomposition of the qq sea

PDF fits conventionally assume $x\overline{d} - x\overline{u} \xrightarrow{x \to 0} 0$

NMC found $d \neq u$ at medium x

Here is what happens when the xd – xu constraint at low x is relaxed

A deuteron run at HERA Could have disentangled the light flavor sea

MPI Munich

Burkard Reisert EINN 09 Milos

H1 only (HERA I)

H1 +BCDMS

Poorly constrained

Attempt to fit U and D Only one input: F_2 ep

Fit stabilized by fixed target data (sum rules help)

Low x, Large Parton Densities and Saturation

The Birth of Experimental Low × Physics

MPI Munich

- Biggest HERA discovery: strong increase of quark density (F_2) and gluon density $(d F_2 / d \ln Q^2)$ with decreasing x in newly explored regime.
- Low x, `large' Q^2 is high density, low coupling limit of QCD ...
- No saturation observed yet \rightarrow probe at even smaller x

Issues at low x? Low x = High y!

Neutral current DIS cross section expressed by structure functions:

$$\frac{d^2 \sigma^{e^{\pm}p \to e^{\pm}X}}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \underbrace{\left(1 + \left(1 - y\right)^2\right)}_{Y_{\pm} = 1 \pm \left(1 - y\right)^2} \cdot \left(F_2\left(x, Q^2\right) - \frac{y^2}{Y_{\pm}}F_L\left(x, Q^2\right)\right)}_{\tilde{\sigma}: \text{ Reduced cross section}}$$

MPI Munich

Burkard Reisert EINN 09 Milos

- Measure σ_r at fixed x, Q2 but varying y
 - $y = Q^2 / sx$ $\sqrt{s} = ep$ center-of-mass energy

Varying y \rightarrow varying s \rightarrow dedicated low E_p runs at end of HERA

Cross Sections for direct FL extraction

F_L Extraction: Rosenbluth plots

Extracted F_L and $F_2 - ZEUS$

- Most precise F₂
 measurement from ZEUS
 in kinematic region studied
- First F₂ measurement without assumptions on F_L

- Data support a non-zero F_L
- Predictions for F₂ and F_L are consistent with data

Extracted F_L – medium & high Q^2

Medium Q2 published in Phys. Lett. B665, p. 139

Milos

Extracted $F_1 - Low Q^2$

Ap. Ag>it

MPI Munich

Burkard Reisert EINN 09 Milos

 F_L measured down to $Q^2 = 2.5 \text{ GeV}^2$! Data are consistent with R~0.25 ($F_L = 0.2 \cdot F_2$)

Average $F_L - H1$

MPI Munich

Burkard Reisert EINN 09 Milos H1 measurements cover $2.5 \le Q^2 \le 800 \text{ GeV}^2$ and $0.00005 \le x \le 0.05$ For $Q^2 \ge 10 \text{ GeV}^2$, agree well with H1PDF 2009 prediction.

Average $F_L < 100 \text{ GeV}^2$

- MSTW and H1PDF 2009 predictions use the same heavy flavour scheme to calculate F_L.
- Data agree better with calculation of CTEQ (and Alekhin)
 - Data is consistent with constant $R \sim 0.25$ (H1) $R = 0.18 \stackrel{+ 0.07}{- 0.05}$ (ZEUS). $R = F_L/(F_2-F_L)$
 - Good agreement with IIM and GBW dipole models, NLL(1/x) prediction.

Measuring FL with ZEUS

Milos

Background Subtraction - ZEUS

MPI Munich

subprocesses (direct, resolved, diffractive,...) weights Adjusted to γp cross section measurement. Control using 6m electron tagger. Complimentary studies with γp enriched data sample.

Photoproduction BG removed using PYTHIA MC with

Measuring F_L with H1

DIS event of Q² near 30 GeV²

Upgrades for FL SpaCal (94) BST (95+03) Triggers (03-07) - Inner Chamber (CIP) - SpaCal - Fast Tracking (CJC) - Jet Trigger (LAr)

MPI Munich

Burkard

Reisert

EINN 09 Milos

Three Q² ranges

3 to	12 GeV ²	SpaCal+BST
		prelim. 04/09
12 to	90 GeV ²	SpaCal+CT:
		published 08
35 to	800 GeV ²	LAr+CT:
		prelim. 03/08

Event selection Criteria

El. in SpaCal or LAr (Calo & Trig) E'_e >3 GeV Track in CT or BST (veto neutrals, e/p) Interaction vertex E-Pz = $\Sigma_i E_i (1 - \cos \theta_i) > 35$ GeV Reduces largely radiative corrections

Background Subtraction – H1

At small energies severe contamination by γp events.

Those are charge symmetric, apart from small effects due to anti-proton vs protons, which is measured using e+p and e-p data, and corrected for

Burkard

Reisert

EINN 09

Milos

Scattered electron distributions (SpaCal + CT)

H1 background subtraction based on data. Trade off between background rejection and stat. unc. of background sample (wrong chrg.) 37

Summary

Precision measurements from HERA

- inclusive NC & CC cross sections
- structure functions
- parton densities

Many more not shown: QCD-Jets, Diffraction, Exclusive vector mesons, DVCS, searches BSM limits ...

Issues:

- valence quarks constrained by NC & CC at high Q² d_v will remain less precise than u_v
- sea quarks obtained from F₂ at low x possibility of an asymmetric light flavor sea d-u≠0
- gluons from scaling violations, F_L, jets, vector mesons, cc bb ultimately precision to be seen, final uncertainty at high x?
- high x: extrapolating towards x→1 How to assess uncertainties?
- Iow x: When does the strong rise saturate?

MPI Munich

Backup Slides

MPI Munich

Polarisation Effects in NC

$$\begin{split} \tilde{F}_2 &= F_2^{\gamma} - (v_e \pm P_e a_e) \chi_Z F_2^{\gamma Z} + ((v_e^2 + a_e^2) \pm P_e 2 v_e a_e)) \chi_Z^2 F_2^Z \\ \tilde{F}_3 &= - (a_e \pm P_e v_e) \chi_Z F_3^{\gamma Z} + ((2v_e a_e \pm P_e (v_e^2 + a_e^2)) \chi_Z^2 F_3^Z) \end{split}$$

Nb.: xF_3 is written as F_3 for simplicity

Polarization modifies γZ and Z terms:

- -- Axial in F_2 , vector in F_3
- -- dependent on size of Pe

$$\boldsymbol{v}_{e} \approx \mathbf{0}$$

-- F₂ : 1st order, ~ $\pm P_{e}a_{e}\chi_{Z}F_{2}^{\gamma Z}$
-- F₃ : 2nd order only, ~ $\pm P_{e}a_{e}^{2}\chi_{Z}^{2}F_{3}^{Z}$

Unpol: $\sigma(e^+) - \sigma(e^-) \rightarrow F_3^{\gamma Z}$ Pol : $\sigma(P_e \rightarrow) - \sigma(P_e \leftarrow) \rightarrow F_2^{\gamma Z}$

MPI Munich Burkard Reisert EINN 09 Milos • Polarization effects expected only at EW scale, i.e large Q²

NC Cross Section Asymmetries

160pb⁻¹ NEW NC e-p data: first combine the polarisations to look at

Extracted F_L – medium & high Q^2

Medium Q2 published in Phys. Lett. B665, p. 139

Low x & SF

Extracted $F_1 - Low Q^2$

Data are consistent with $R\sim0.25$ ($F_L = 0.2 \cdot F_2$)

MPI Munich

Burkard Reisert DIS09 Low x & SF

Burkard Reisert EINN 09 Milos

45

"Imaging" of the Proton

MPI Munich

Burkard Reisert

EINN 09

Milos

